Good Nash Equilibria in Graphical Games ⋆
نویسنده
چکیده
This paper addresses the problem of fair equilibrium selection in graphical games. Our approach is based on the data structure called the best response policy, which was proposed by Kearns et al. [12] as a way to represent all Nash equilibria of a graphical game. In [9], it was shown that the best response policy has polynomial size as long as the underlying graph is a path. In this paper, we show that if the underlying graph is a bounded-degree tree and the best response policy has polynomial size then there is an efficient algorithm which constructs a Nash equilibrium that guarantees certain payoffs to all participants. Another attractive solution concept is a Nash equilibrium that maximizes the social welfare. We show that, while exactly computing the latter is infeasible (we prove that solving this problem may involve algebraic numbers of an arbitrarily high degree), there exists an FPTAS for finding such an equilibrium as long as the best response policy has polynomial size. These two algorithms can be combined to produce Nash equilibria that satisfy various fairness criteria.
منابع مشابه
Computing Approximate Equilibria in Graphical Games on Arbitrary Graphs
We present PureProp: a new constraint satisfaction algorithm for computing pure-strategy approximate Nash equilibria in complete information games. While this seems quite limited in applicability, we show how PureProp unifies existing algorithms for 1) solving a class of complete information graphical games with arbitrary graph structure for approximate Nash equilibria (Kearns et al., 2001; Ort...
متن کاملBounding the Uncertainty of Graphical Games: The Complexity of Simple Requirements, Pareto and Strong Nash Equilibria
We investigate the complexity of bounding the uncertainty of graphical games, and we provide new insight into the intrinsic difficulty of computing Nash equilibria. In particular, we show that, if one adds very simple and natural additional requirements to a graphical game, the existence of Nash equilibria is no longer guaranteed, and computing an equilibrium is an intractable problem. Moreover...
متن کاملTractable Algorithms for Approximate Nash Equilibria in Generalized Graphical Games with Tree Structure
We provide the first fully polynomial time approximation scheme (FPTAS) for computing an approximate mixedstrategy Nash equilibrium in graphical multi-hypermatrix games (GMhGs), which are generalizations of normal-form games, graphical games, graphical polymatrix games, and hypergraphical games. Computing an exact mixed-strategy Nash equilibria in graphical polymatrix games is PPADcomplete and ...
متن کاملGames on Graphs The Complexity of Pure Nash Equilibria
In this thesis, we analyze the problem of computing pure Nash equilibria in succinctly representable games, with a focus on graphical and action-graph games. While the problem is NP-Complete for both models, it is known to be polynomial time computable when restricted to games of bounded treewidth. We propose a dynamic programming approach for computing pure Nash equilibria of graphical games. ...
متن کاملOn Sparse Discretization for Graphical Games
This short paper concerns discretization schemes for representing and computing approximate Nash equilibria, with emphasis on graphical games, but briefly touching on normal-form and poly-matrix games. The main technical contribution is a representation theorem that informally states that to account for every exact Nash equilibrium using a nearby approximate Nash equilibrium on a grid over mixe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007